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ABSTRACT

A current sheet susceptible to the tearing instability is used to drive reconnection turbulence in the presence of a
strong guide field. Through nonlinear gyrokinetic simulations, the dependencies of central quantities such as the
heating rate on parameters like collisionality or plasma β are studied, revealing that linear physics tends to predict
only some aspects of the quasi-saturated state, with the nonlinear cascade responsible for additional features. For the
solar corona, it is demonstrated that the kinetic heating associated with this type of turbulence agrees quantitatively
with observational volumetric heating rates. In the context of short particle acceleration events, the self-consistent
emergence of plasmoids or flux ropes in the turbulent bath is found to be important: ubiquitously occurring merger
events of these objects cause strong bursts in the heating rate, the timescale of which is consistent with nanoflare
observations. Furthermore, anisotropy of the temperature fluctuations is seen to emerge, hinting at a new means of
generating coronal ion temperature anisotropy in the absence of cyclotron resonances.

Key words: acceleration of particles – magnetic reconnection – plasmas – Sun: corona – turbulence

Online-only material: color figures

1. INTRODUCTION

The physics underlying magnetic reconnection processes
have been the center of significant attention. One of the most
pressing questions relates to coronal heating: can reconnection
events provide enough particle acceleration to explain the
still insufficiently understood phenomenon of coronal spectra
extending to very high energies? Zweibel & Yamada (2009)
contains an overview of reconnection physics, including a list of
open questions; additionally, a number of encompassing review
papers exists on the topic, recent examples of which include
Yamada et al. (2010), Cassak & Shay (2012), Lazarian et al.
(2012), Karimabadi et al. (2013), and Paschmann et al. (2013).
For a review of coronal particle acceleration physics, including
reconnection-based heating, the reader is directed to Zharkova
et al. (2011).

Another important issue is the observation of ion temperature
anisotropy in the corona, which favors perpendicular tempera-
tures and is typically explained through cyclotron resonances
(Marsch et al. 1982; Kohl et al. 1997, 1998; Cranmer 2001; von
Steiger & Zurbuchen 2003). In contrast, the present approach
focuses on how lower-frequency processes may influence
temperature anisotropy.

Simulation-based studies of reconnection (see Donato et al.
2013 for an overview) can mostly be divided into fluid (Neukirch
1996; Ottaviani et al. 2004; Loureiro et al. 2009; Servidio et al.
2009; Fitzpatrick 2010; Grasso et al. 2010; Zweibel et al. 2011;
Rappazzo & Velli 2011; Comisso et al. 2012) and kinetic (Hesse
et al. 1999; Swisdak et al. 2003; Pritchett 2006; Wang et al.
2008; Drake et al. 2009; Daughton et al. 2009; Loureiro et al.
2013) approaches. The latter, while utilizing a more complete
physical framework, require large—sometimes prohibitively
so—amounts of computational resources, particularly when the
reconnecting field is much smaller than the guide field. In the
fusion community, where plasmas are strongly magnetized, a
popular and well-benchmarked tool for the study of kinetic

effects is gyrokinetics, which has also been used to address
various astrophysical problems (see, e.g., Schekochihin et al.
2009). A moderate number of gyrokinetic studies of space-
physics-relevant tearing modes exists (Wan et al. 2005; Rogers
et al. 2007; Perona et al. 2010; Pueschel et al. 2011; Numata
et al. 2011; Zacharias et al. 2012; Ishizawa & Watanabe
2013; Kobayashi et al. 2014), most of which cover only linear
physics or the onset of nonlinearity, but not fully developed
turbulence. It is therefore essential that the nonlinear physics
be investigated in detail and that comparisons be made that
relate linear and nonlinear scalings and features. Existing
gyrokinetic simulations of turbulent reconnection tend to focus
on reconnection events occurring in otherwise created turbulent
fields, e.g., via the excitation of Alfvén waves (TenBarge
& Howes 2013). The aim of the present work is to drive
reconnection through a current sheet and then study—motivated
primarily by solar corona physics—particle acceleration and
heating as a consequence of both the direct impact of the sheet
and of secondary reconnection events; look for the possible
formation of temperature anisotropies; and, more generally,
comment on the similarities and differences between linear and
nonlinear physics in the simulations. It is worth reiterating that
using this approach, turbulence arises from the linear tearing
mode drive and then, in turn, causes a constant barrage of
secondary reconnection events.

One aspect of secondary reconnection is the plasmoid in-
stability. This process, which has been amply discussed in the
literature (Biskamp 1986; Drake et al. 2006; Loureiro et al.
2007; Fermo et al. 2012; Huang & Bhattacharjee 2013; Cassak
& Drake 2013), describes a critical breaking-up of an elongated
current sheet into filaments of roughly circular cross-sections
called plasmoids and occurs at high Lundquist numbers. Its rates
are super-Alfvénic, and it creates an environment in which dif-
ferent plasmoids may interact and merge. In the present paper,
the turbulent bath and the current sheet similarly birth circu-
lar structures that turn out to be rather important to heating, and
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connections with the standard picture of the plasmoid instability
are made.

In Pueschel et al. (2011), building on previous work (Por-
celli 1991; Rogers et al. 2007), linear reconnection studies were
undertaken that describe the variation of the reconnection rate
with all relevant physical input parameters, followed by initial
studies of both decaying and driven reconnection turbulence.
The latter topic—quasi-stationary turbulence driven by a con-
tinuously replenishing, reconnecting current sheet—is the focus
of the present paper, which is structured as follows. A brief re-
view of the underlying (linear) tearing mode physics is given in
Section 2, along with a description of gyrokinetics, the Vlasov
equation on which this work is based, and a few details on the
numerical implementation; the standard set of physical parame-
ters used throughout most of this work is specified there as well.
Section 3 then focuses on the initial condition, which models
current sheets and is simultaneously used in the Krook-type
drive term. In Section 4, in-depth analyses of reconnection tur-
bulence are presented, with the central areas of focus being the
description of the properties of the observed turbulence; para-
metric dependencies of central quantities, such as the parallel
electric field, and the relation of these dependencies to linear
physics; the occurrence of coherent circular structures referred
to as plasmoids and merger events of the same; and the compar-
ison of collisional versus kinetic heating. Anisotropies between
parallel and perpendicular temperature fluctuations are the sub-
ject of Section 5. In Section 6, parameters relevant to plasmas in
the solar corona are applied to the simulations, enabling a quan-
titative comparison between observations and central results of
the simulation studies in the present work. This is followed by
a summary of the findings of this paper.

2. ANALYTICAL BACKGROUND AND
NUMERICAL FRAMEWORK

The tearing mode, a process of magnetic reconnection,
is a plasma instability that depletes free magnetic energy
from a current gradient by reorienting the magnetic field
structure corresponding to said current (see, e.g., Furth et al.
1963). It relies on some form of resistivity, supplied either by
collisionality, as in a fluid picture, or electron inertia/pressure,
as in a kinetic picture. In the present work, the focus lies on
sinusoidal current sheets, which have been amply described in
Porcelli (1991), Rogers et al. (2007), and Pueschel et al. (2011),
for which the usual tearing mode stability parameter becomes
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Here kx,y are wave numbers in the directions perpendicular to
the uniform background magnetic field B0 (along which the
coordinate z is defined, normalized to the macroscopic length
Lref , which can be thought of as the length of a coronal loop;
in the following, derivatives along z are dropped). Both kx and
ky are normalized to the inverse of the ion sound gyroradius
ρs = csmic/(eB0), which coincides with the ion gyroradius
for equal background temperatures Ti0 = Te0 of the ions and
electrons. Here the following quantities have been introduced:
the ion sound speed cs = (Te0/mi)1/2, the ion mass mi, the
speed of light c, and the elementary charge e. The reconnecting
field By0 ≡ By(t = 0) ∝ sin kcsx is imposed at a single driving
kx = kcs ≡ 2π/λcs (with ky = 0; one may think of λcs as a shear

length), inducing tearing mode growth in the range ky ∈ ]0, kcs[,
corresponding to Δ′ ∈ ]∞, 0[.

In the present paper, this physical setup is studied using
the gyrokinetic framework (Frieman & Chen 1982; Brizard
& Hahm 2007). Unlike their kinetic equivalents, gyrokinetic
codes are not able to capture cyclotron or compressional Alfvén
waves, due to their high frequencies. In gyrokinetics, the fast
cyclotron motion of particles about field lines is ordered out,
effectively eliminating one velocity space coordinate and thus
significantly enhancing numerical efficiency. The assumptions
made to arrive at the gyrokinetic equations are as follows: due
to the large background magnetic field, the Larmor frequency of
any of the fully ionized particle species is much larger than any
frequencies of interest for a given system, such as frequencies
of plasma instabilities, and any background length scales, such
as the variation scales of the background magnetic field LB or of
the background density/temperature gradients Ln,T , are much
larger than the Larmor radius ρ. Therefore, while not applicable
in cases of weak magnetization, gyrokinetics makes the study
of collisionless or moderately collisional reconnection in strong
guide fields feasible, with the reconnecting field Brec � B0,
which are particularly difficult to simulate for kinetic codes due
to the implied scale separation. A recent publication (TenBarge
et al. 2014) compares results from gyrokinetic and kinetic codes,
where the latter use a strong guide field of varying amplitude,
and concludes that good agreement between the two approaches
can be reached for a wide range of settings. Gyrokinetic codes
have been used to study a number of space- and astrophysical
systems; examples are referenced throughout this paper.

The reader’s attention is now directed to the numerical im-
plementation and central equation used in this work. All numer-
ical results in this paper are based on the nonlinear gyrokinetic
Vlasov solver Gene5 (Jenko et al. 2000). Its capabilities with re-
spect to reconnection physics are discussed in detail in Pueschel
et al. (2011), but a small change in the Krook drive term of
the Vlasov equation has since been introduced; the new Vlasov
equation reads

∂gj

∂t
=

∑
k′
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k′
xky − kxk
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y
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χ (k′)gj (k − k′) − ωdr

× (gj (ky = 0, t) − gj (ky = 0, t = 0)) +
∂fj

∂t

∣∣∣∣
coll

, (2)

where the terms on the right side, in order, correspond to the
E × B nonlinearity (through which the linear tearing mode is
receiving energy from the current sheet), the Krook-type drive
term, and the collision term; the parallel nonlinearity (Candy
et al. 2006) can be ignored for Lref/ρs � 100. The quantities
introduced here are the modified perturbed distribution function
gj = fj + 2qjv‖Ā‖jFj0/(mjvTj ) of species j, defined relative
to the perturbed distribution function fj; the time t in units
of Lref/cs; the generalized potential χ = Φ̄j − vTjv‖Ā‖j +
(Tj0/qj )μB̄‖j ; and the charge qj. Furthermore, the background
distribution function Fj0 is uniform in space and a simple
Maxwellian in velocity space, Fj0 = π−3/2 exp(−v2

‖ − μB0),
and overbars denote (species-dependent) gyroaverages. The
Vlasov equation is complemented by field equations for the
electrostatic potential Φ, the parallel magnetic vector potential
A‖, and (perturbed) parallel magnetic field B‖, which can be
found in Pueschel et al. (2011). The Debye length, being much

5 For code access and details, see http://gene.rzg.mpg.de.
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smaller than the scales investigated throughout this paper, is
set to zero. Additionally, the following definitions are used:
ωdr is the nonlinear drive frequency; vTj = (2Tj0/mj )1/2 is
the thermal velocity to which the parallel velocity coordinate
v‖ is normalized; and μ = mjv

2
⊥/(2B0) is the magnetic

moment coordinate, normalized to v2
Tj . While it may appear

counterintuitive that the formally linear Krook drive term and
its associated frequency are referred to as nonlinear, this label
refers to their role in driving nonlinear, turbulent simulations,
whereas linear tearing mode simulations (which, ironically,
rely on the Vlasov nonlinearity) require no replenishing of the
current sheet.

Equation (2) does not incorporate variations along the di-
rection along the magnetic field. Preliminary simulation results
indicate, however, that fully resolving (with, in general, ∂z �= 0)
that coordinate—while not adding helicity to the driving current
sheet—does not alter the linear results significantly; note that
for these simulations, the strength of the parallel current also
depends on z. Using the present, reduced setup where ∂z ≡ 0
is therefore justified as long as the current sheets under investi-
gation conform with the requirements implied above. Note also
that the effective use of periodic as opposed to line-tied parallel
boundary conditions (Einaudi & Van Hoven 1981) can be mo-
tivated by assuming that, say, in a coronal loop, the nonlinear
plasma state that serves as the equilibrium of microturbulence
studies should be largely independent of the parallel boundary
conditions.

The default set of physical parameters used throughout most
of this paper is as follows: the kx wave number kcs = 0.4
at which the current sheet is initialized; the electron pressure
β ≡ βe ≡ 8πne0Te0/B

2
0 = 0.5, with the electron background

density ne0 ≡ ni0; equal ion and electron temperatures: Ti0 =
Te0 (and thus βe + βi = 1); the mass ratio me/mi = 0.01, a
setting used to lower simulation cost; and lastly, the driving
frequency ωdr = 0.1, normalized to cs/Lref ; see Section 3. Also
in that section is a description of the current sheet setup, which
is produced through an x-dependent, sinusoidal shift of the
perturbed electron distribution function in the parallel velocity,
which along x has a maximum of Δv‖ = 0.5. The following
dimensionless definition is used for the collision frequency, with
all constituting quantities normalized to cgs units:

νc = 3.1 × 10−6 ne0Lref

T 2
e0

[
24 − ln

(
n

1/2
e0

8.6 × 10−5 Te0

)]
. (3)

The term in the square brackets is the usual Coulomb logarithm.
The default setting of the collisionality is νc = 0.005, which
translates to νei = 0.02(mi/me)1/2 in units of cs/Lref . All binary
collision types are retained in the collision operator.

As the standard numerical settings for reconnection turbu-
lence simulations in this paper, the following values are se-
lected: 128 × 64 complex modes in x × y (corresponding to
128 × 128 grid points in real space, or 192 × 192 when taking
into account anti-aliasing in the Vlasov nonlinearity), spanning
a periodic square box with edges 20πρs long, and 32 × 8 grid
points in v‖×μ, spanning a velocity space of −3vTj . . . 3vTj and
0 . . . 9v2

Tj , respectively. Convergence tests were performed suc-
cessfully in all these parameters for the standard nonlinear (i.e.,
turbulence) case. Additionally, convergence was ensured sepa-
rately in the x box size and resolution when scanning various
physical parameters. Note that as kcs = 0.4 is fixed, the default
box contains four current sheets, while increasing the box size
for convergence testing adds more current sheets (along with

Figure 1. Linear tearing mode growth rates for the standard parameter set,
normalized to the inverse Alfvén time: crosses are collisionless data, and
diamonds have the default νc. Shown as a red dotted curve, the analytical
solution of the (collisionless) dispersion relation does not capture the physics
very accurately anymore for this case. Marked with blue squares are the ky
values that are included in the turbulent case, which, in particular, reasonably
cover the range of most unstable wave numbers.

(A color version of this figure is available in the online journal.)

grid points in x). All quantities are presumed to be constant in
the real-space direction z, which is parallel to the (unperturbed)
magnetic field.

Analytical theory (Porcelli 1991) yields good predictions for
the limits ky → 0 and ky → kcs, as long as certain conditions
are fulfilled with respect to the total normalized plasma pressure
βtot = βe + βi = β(1 + Ti0/Te0) and the mass ratio me/mi; see
Pueschel et al. (2011); Rogers et al. (2007, 2011) (where it was
necessary to use a cold-ion limit to achieve good agreement).
For the physical parameters under consideration in the present
work, spectra of the tearing mode growth rate γ are shown
in Figure 1, with the full dispersion relation solution—as was
also done in Comisso et al. (2013)—included as a red dotted
line. The latter exceeds the numerical results by a few tens of
percent, in part due to the finite ion temperature, and should
only be used for order-of-magnitude estimates for the present
parameter case. Note that the analytical curve in this figure
does not include corrections due to finite collisionality (which
slightly increase γ ); a discussion of the applicability of the
corrections in Porcelli (1991) can be found in Pueschel et al.
(2011); however, the collisional simulation data points have
been adjusted to compensate for the slow collisional decay of
the current sheet with time.

While for linear results in Pueschel et al. (2011) and in
Figure 1, growth rates are normalized to the inverse Alfvén
time, which in units of cs/Lref reads

γA = kcsBy0,max

(ne0mi)1/2

(
2

β

)1/2

, (4)

the turbulence studies, as well as any additional linear results,
in this paper use cs and Lref as normalization, unless specified
otherwise. The quantity By0,max ≡ 21/2Brec introduced above
corresponds to the maximum along x of the magnetic field
perturbation By = −∂xA‖ at time t = 0 (note that B‖ does not
enter into By, as it involves ∂z � ∂x); for default parameters,
By0,max = 5.107 in units of B0ρs/Lref .

In order to facilitate straightforward comparisons with fluid
approaches, it is helpful to convert the collisionality νc into the
Lundquist number S. For gyrokinetic systems with a sinusoidal
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current sheet, the latter can be expressed as (Numata et al. 2011)

S = 13.0
γAβ(mi/me)1/2

νck2
cs

, (5)

which effectively reduces to

S = 18.4
By0,max(βmi/me)1/2

νckcs
. (6)

For the default set of parameters, this prescription yields S =
3.32 × 105. With the largest value νc = 0.5 used in this paper,
S lies somewhat below 104, an empirical threshold for multi-
X-line reconnection (Cassak & Drake 2013) stemming from
the usual inflow–outflow reconnection setups. To what extent
this criterion is applicable here shall be one of the questions
addressed in Section 4. Note also that the reconnection phase
diagrams in Cassak & Drake (2013) put the present parameter
case deeply into the Hall reconnection regime.

As indicated by the blue squares, only a subset of the modes
shown in Figure 1 is included in the turbulence simulations.
Since the linear physics require steeply rising x resolution as ky
approaches kcs (i.e., when Δ′ → 0), it is unfeasible to completely
resolve the whole linear range shown in the figure. Instead, the
lowest finite ky is chosen as 0.1, and a larger number of ky modes,
all of which are linearly stable, are added at higher ky to cover
the turbulent cascade. As is confirmed by nonlinear convergence
studies, the relevant linear physics—mostly in the form of the
fastest-growing wave numbers—is still captured rather well,
quantitatively. It should also be remarked that the resolution in x
required to yield converged simulations is slightly lower for the
turbulent case than it is for the linear growth rates. The reason
is likely related to the fact that the turbulent cascade is largely
independent of the driving wave numbers, and it contributes
significantly to quantities such as the parallel electric field.

One aspect of the numerical implementation central to this
study is the drive term, along with the initial condition, both of
which shall be discussed in the next section.

3. PHYSICAL INITIAL CONDITION AND DRIVE

As mentioned above, the initial state of the perturbed distri-
bution is used in the drive term of the Vlasov equation as part
of a new equilibrium and as a source of free energy. This prop-
erty differs somewhat from gyrokinetic flux-tube simulations of
fusion plasmas, where the quasi-stationary saturated state tends
to be independent of the initial condition.

To construct the initial perturbed distribution function, an
isotropic Maxwellian velocity space is shifted along v‖, with the
shift −Δv‖ cos kcsx (for the electrons; opposite sign for the ions)
depending on the spatial position; since Δv‖ is normalized to vTj ,
the lighter and faster electrons carry almost the entire current of
the sheet. A current gradient is thus created along the x direction.
A small perturbation δnj is now added to the (perturbed) density
nj, such that δnj � nj � nj0 for species j; the additional
perturbation is much smaller than the density associated with
the perturbed distribution function fj, which in turn is much
smaller than the background density nj0. The value selected
is δnj/nj = 10−3 for the nonlinear cases (linear simulations
profit from a far smaller fraction). Figure 2 illustrates this initial
condition, showing the magnetic potential A‖.

Unlike in many other reconnection studies, the current sheets
used here are in immediate proximity to each other, the motiva-
tion being that multiple periodic current sheets are included in

Figure 2. Initial condition: contours of the magnetic potential A‖ in the
perpendicular plane. Four current sheets are subjected to a small but visible
perturbation, leading to tearing mode growth in 0 < ky < kcs. The ky = 0 mode
of the system is then continuously forced back toward this initial condition to
inject energy in the absence of background pressure gradients. A‖ is given in
units of B0ρ

2
s /Lref .

(A color version of this figure is available in the online journal.)

the simulation box in order to capture inverse cascade effects that
stretch to lower kx < kcs. Therefore, important differences exist
with regard to projected structure formation—more separated
current sheets would likely see coherent structures form locally,
with less interaction between structures in different sheets. Con-
versely, plasmoid chains created by directly neighboring current
sheets will interact immediately across sheets. The present setup
can be considered more suitable for investigating fully turbulent
reconnection where structures are present more or less uniformly
throughout the domain.

The drive term in Equation (2) forces the distribution, at
a frequency of ωdr, back to the original state at t = 0, but
only for ky = 0; the current sheet lives on that wave number,
whereas the tearing mode as well as the turbulent cascade in ky
have ky > 0. Thus, the current sheet, which would otherwise
undergo quasilinear depletion, is continuously replenished at a
timescale of τrepl ≡ ω−1

dr . This allows for a quasi-stationary state
to develop, where energy is injected through the current sheet,
processed by nonlinear dynamics, and eventually dissipated (or
possibly even reabsorbed by the current sheet).

In the limit of small ωdr—relative to the characteristic
frequencies of the system—the restoring force on fj (ky = 0)
becomes small, and the system will take on the properties of
decaying turbulence, including an inverse cascade of magnetic
energy (Pueschel et al. 2011). Conversely, for very large ωdr,
the ky = 0 mode will remain almost completely fixed to
the initial condition. For this case, the turbulent cascade will
be affected only indirectly, as the ky = 0 mode enters into
nonlinear coupling and therefore into the process underlying
energy transfer.

When left to decay freely with the tearing mode suppressed,
the current sheet dissipates collisionally on a timescale of
τdecay ≈ 2000 (for the default νc), which is much longer than the
dynamical timescales, as will be evident by comparison with the
results in Section 4. For the purpose of quantifying the decay
timescale, the perturbation δnj/nj was set to a very small value,
and only one finite-ky mode was included at near-zero ky.
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In Pueschel et al. (2011), a very similar initial condition was
used to study both decaying and driven turbulence. For the
latter case, however, a different drive term was employed that
involved the absolute value of the drive term in Equation (2). As
a result, it is difficult to compare the two approaches directly.
The next section presents in-depth analyses of the more realistic
turbulence created by the new drive form.

4. RECONNECTION TURBULENCE

The aforementioned physical and numerical setup is now used
to study the properties of the ensuing reconnection turbulence.
Before discussing heating processes, a number of diagnostics
are used for characterization.

4.1. Turbulence Characteristics

Tearing mode growth quickly breaks up the coherent
structures that dominate the initial state (which was shown in
Figure 2). In Figure 3, the beginning of the nonlinear phase is
illustrated: the current sheets are starting to break up, but the
fully turbulent state has not yet been reached. In addition to A‖,
the figure also includes the (perturbed) parallel electron flow
speed u‖e—obtained via taking the v‖ moment of fe—in units
of csρs/Lref .

At a later time, the picture has changed fundamentally—see
Figure 4, where contours are taken exemplarily at t = 260, rep-
resentative of the quasi-stationary saturated state. Now circular
coherent structures have formed that slowly drift in the perpen-
dicular plane and may interact with one another or with current
filaments through j × B forces. Based on their geometric prop-
erties, they will henceforth be referred to as plasmoids (Drake
et al. 2006), although one may equivalently think of them as flux
ropes (Lazarian et al. 2011; Daughton et al. 2011) that exhibit no
variation along the background field. Analyses involving these
plasmoids are presented in various places throughout this paper.

As some of the filaments, particularly ring-shaped ones
encircling plasmoids, have a width not much larger than the
grid spacing, it needs to be stressed that they are numerically
resolved; at higher resolution (in both x and y), those filaments
do not change their characteristic shapes or amplitudes.

It is instructive to also study time-averaged contours of A‖ and
u‖e, as provided in Figure 5; here the initial, transient phase of
the simulation was excluded, and time averaging was done only
over the quasi-stationary state. The magnetic potential shows
to have undergone an inverse cascade, much like the decaying
turbulence described in Pueschel et al. (2011), and it is therefore
important to reiterate that these simulations are converged
in the box size. On the other hand, u‖e shows significant
contributions both at the smallest ky as well as kx = kcs.
The latter is unsurprising, as the current sheets inherently
produce potential wells that attract coherent structures—most
importantly, plasmoids—to these locations. As a comparison
of the color bars in Figures 4 and 5 illustrates, however, the
most prominent filaments and plasmoids far exceed the averaged
structures in terms of their amplitudes.

As one central property of the tearing mode is to rearrange the
magnetic field and reduce its free energy through isotropization,
a closer look is taken at the perturbed Bx and By in Figure 6.
During the magnified linear phase at t � 10, the emerging Bx
depletes By, which stems from the current sheet. Once saturation
is achieved, these components are almost equal in amplitude,
with a marginally larger Bx—this observation is consistent with
the time-averaged A‖ shown in Figure 5. The time traces of

Figure 3. Contours of A‖ (above) and the parallel electron flow speed u‖e
(below), the latter in units of csρs/Lref , at t ≈ 5. At this point, the current sheet
starts to break up, but turbulence has not yet developed. The electron flow speed
is the dominant constituent of the perturbed plasma current (the other being the
much smaller ion flow speed).

(A color version of this figure is available in the online journal.)

Bx,y also illustrate that the dynamical or correlation time of
the fluctuating fields is indeed much shorter than the collisional
decay time τdecay, as claimed in Section 3. Moreover, a clear
quasi-stationary saturated state is achieved, as expected when
net energy input from the drive term balances dissipation.

To understand the precise balance of the most important
modes in the system, one may consult Figure 7. Here the
temporal evolution of various mode numbers of |A‖| is shown for
the early phase of the simulation. During the linear phase (again,
t � 10), the aforementioned depletion of the current sheet
at (4, 0)—denoting (kx/kx,min, ky/ky,min)—is visible, while the
linearly unstable modes (0, 1), (0, 2), and (0, 3) are growing.
Once the transition to the nonlinear phase is completed, an
intermediate stage begins, which lasts approximately until
t ≈ 70; during which (0, 2) still competes with (0, 1), but
the nonlinear forward cascade already transfers energy to the
subdominant and stable modes. Once this transitional stage is
completed, the system settles into the quasi-stationary state. The
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Figure 4. Contours of A‖ (above) and u‖ of the electrons (below), at t = 260.
Now the system is fully turbulent, symmetry is broken, and the original current
sheets are no longer visible; in their stead, plasmoids and current filaments
dominate the appearance of u‖e. Compare Figure 3.

(A color version of this figure is available in the online journal.)

dominant stable mode at kx = 0 is (0, 4), which is also included
in the figure.

As one may expect intuitively, the saturation level of the (4, 0)
mode, relative to the initial value, depends on the nonlinear drive
ωdr. Larger values of ωdr lead to larger saturated amplitudes of
the current sheet mode, as the drive term is able to force the
ky = 0 mode back to the initial state more effectively.

These spectral properties are also reflected in the amplitude
spectra of A‖, which are shown alongside those of Φ, B‖, and the
perturbed electron density ne in Figure 8. Here quadratic kx and
ky spectra are shown. Technically, spectra of k⊥ = (k2

x + k2
y)1/2

may deviate, but it has been verified—independently of the
curves shown in Figure 8—that, in particular, the slopes at higher
kx,y are the same as those at the corresponding k⊥. Hereafter,
k⊥ is therefore used simply to refer to kx and ky equally.

Two spectral regions can be identified: At low k⊥, the spectra
of B‖ and ne flatten out entirely, whereas Φ and A‖ are
moderately steep, reflecting—particularly in the ky spectra—the
presence of the linearly unstable modes. At higher k⊥, the

Figure 5. Contours of A‖ (above) and u‖ of the electrons (below), time-averaged
over the quasi-stationary, saturated state. The influence of the current sheets is
visible in u‖e, whereas A‖ shows signs of an inverse cascade similar to decaying
turbulence.

(A color version of this figure is available in the online journal.)

Figure 6. Magnetic field fluctuations Bx (black dashed line) and By (red solid
line). During the magnified linear phase, isotropization occurs. During the
saturated period, Bx slightly exceeds By on average, consistent with Figure 5.

(A color version of this figure is available in the online journal.)
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Figure 7. Absolute value of the fluctuating magnetic potential. Shown are
the linear growth and early saturation phases for A‖(kx/kx,min, ky/ky,min). In
particular, (4, 0) corresponds to the current sheet, which is depleted significantly
before the drive term can stabilize it; (0, 1–3) are the linearly unstable modes
that grow (from varying initial amplitudes) until, eventually, (0, 1) dominates
the quasi-stationary state; and (0, 4) is a characteristic example of a linearly
stable mode, which only receives energy through the turbulent cascade.

(A color version of this figure is available in the online journal.)

picture becomes more isotropic, and the spectra for kx and ky are
near-identical in this region. The spectral slopes in this quasi-
inertial range (throughout which dissipation occurs, however)
for 〈Φ2〉 and 〈A2

‖〉 are −4 and −6, respectively, corresponding

to E⊥ ∼ k⊥Φ ∝ k−1
⊥ and B⊥ ∼ k⊥A‖ ∝ k−2

⊥ . This is of
relevance to the parallel electric field and heating rate, which
are introduced below.

These slopes agree with typical values for kinetic Alfvén wave
(KAW) turbulence; see Howes et al. (2008), where a parallel
antenna current was used for driving, or Boldyrev & Perez
(2012), where large-scale forcing supplies energy. Taking from
the former their definition for the magnetic energy EB⊥ ∼ k3

⊥A2
‖

and looking at the spectral slope in the range 1 < k⊥ρs < 7, one
obtains EB⊥ ∝ k−2.7

⊥ , while Figure 8 corresponds to a similar
slope for EB⊥ slightly shallower than k−3

⊥ . For comparison,
solar wind observations yield slopes in the vicinity of k−2.8

⊥
(Alexandrova et al. 2009; Chen et al. 2012), consistent with
the aforementioned or the present numerical results. In general,
KAWs propagate along the magnetic field. While ∂z is zero
in the present case, k‖ picks up a k⊥ contribution through the
perturbed magnetic field; therefore, the observed similarities
may stem from a KAW cascade at higher k⊥ with an oblique
propagation angle. Further studies will have to reveal whether
KAWs are indeed responsible for the slopes found in Figure 8.

After this discussion of the general properties of reconnection
turbulence, the focus is now turned specifically to particle
acceleration and heating due to parallel electric fields.

4.2. Parallel Electric Field and Heating Rate

Magnetic reconnection is known to cause particle acceleration
through the formation of parallel electric fields (see, e.g.,
Neukirch 1996; Pritchett 2006). For the present purpose, the
following definition is useful, dividing the parallel electric field
into three components:

E‖ = Ees
‖ + Efl

‖ + Eind
‖ = ∂Φ

∂z
+

B⊥ · E⊥
B0

− ∂A‖
∂t

. (7)

Figure 8. Spectra of the perturbed fields and electron density, as functions of kx
(above) and ky (below). All quantities shown have the absolute square taken and
are then averaged over the remaining wave number coordinate. For reference,
slopes ∝ k−4 and ∝ k−6 are included as dotted black and red lines, respectively.
The kx and ky spectra are mostly identical, with the exception of the drive range
at low k⊥, where the linearly unstable modes have higher amplitude in the ky
spectra.

(A color version of this figure is available in the online journal.)

Here Ees
‖ is the electrostatic contribution arising from a pos-

sible variation of Φ along the background magnetic field; by
definition, this term is equal to zero in the present approach,
which sets ∂z → 0. The term Efl

‖ denotes the so-called flut-
ter contribution—the perturbed magnetic field projects perpen-
dicular electric field fluctuations along the unperturbed mag-
netic field (as in Rechester–Rosenbluth transport; Rechester &
Rosenbluth 1978)—and Eind

‖ is the inductive term, stemming
from the temporal variation of the perturbed magnetic field. All
these terms are normalized to Te0ρs/(eL2

ref), where e is the ele-
mentary charge. Note that if the z coordinate was to be resolved
in a fully three-dimensional simulation, its characteristic length
scale would be Lref � ρs, resulting in a ∂zΦ that is of the same
order as Efl

‖ or Eind
‖ . It should be stressed that as there is no

symmetry breaking along the parallel direction, i.e., E‖ has no
preferred sign. Inclusion of Efl

‖ is not universal in other works,
but it will be demonstrated below that it is important, as the
flutter consistently exceeds the inductive component.

The first plot in Figure 9 shows, as root mean squares, the time
evolution of the total E‖ as well as the two nonzero constituents.
The flutter contribution can be seen to account for almost the
entire total electric field throughout almost the entire time range.
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Figure 9. Time evolution of the parallel electric field (above) and the heating
rate (below) for the standard parameter set. In the above plot, the three curves
correspond to, from top to bottom: the total field (black), the flutter component
(red), and the inductive component (blue); see the text. The heating rate j‖E‖
refers to heating due to kinetic particle acceleration rather than collisional
dissipation. All quantities are obtained as root mean squares of the spatial
domain.

(A color version of this figure is available in the online journal.)

As A‖ enters into both Efl
‖ and Eind

‖ , it is not surprising that
small fluctuations tend to occur simultaneously in both of these
components; i.e., a spike in Efl

‖ is mostly accompanied by a
spike in Eind

‖ . The bigger spikes in particular are the result of
mergers of plasmoids of the same sign in the current, an aspect
of the turbulence that will be discussed below. Note that the only
moments when Efl

‖ and Eind
‖ become comparable are during the

biggest bursts. Even then, however, Efl
‖ remains an important

contributor to the total parallel electric field.
In the same figure, the second plot contains the (root mean

square of the) heating rate, defined as

j‖E‖ = (qeu‖e + qiu‖i)ne0E‖, (8)

which has the units ne0Te0csρ
2
s /L

3
ref (with ni0 = ne0 due to

quasineutrality). The quantity j‖ is the perturbed current along
the magnetic field, carried mainly by the electrons. There are no
lower-order terms to the heating rate due to the fact that there is
no current or parallel electric field included in the equilibrium.
Partially offsetting the fact that j‖E‖ contains a factor of L−3

ref , its
numerical values can be rather large, as visible in Figure 9 and
even more so in very confined local regions in Figure 10. Thus,
this form of heating may provide an efficient mechanism for
particle acceleration. Alternatively, E‖ alone may be thought to

Figure 10. Contours of the parallel electric field (above) and the heating rate
(below), taken from the same simulation and time step as the data shown in
Figure 4. The more filamentary structure of the electric field is washed out when
multiplied with the current, as both are particularly strong in locations where
plasmoids exist.

(A color version of this figure is available in the online journal.)

provide a means of energizing test particles. To what degree j‖E‖
heating may be relevant to the solar corona is to be addressed in
Section 6.

Heating as used throughout this work not only refers simply
to a change in (perturbed) temperature but may also create
or enhance non-Maxwellian components in the distributions.
For comparisons with high-energy power-law tails in solar
plasmas, one would have to drastically increase velocity space
or, alternatively, include passive particle species with high
background temperatures and observe their saturated state (as
was done with the Gene code in Pueschel et al. 2012). Such
simulations, however, come with a high computational price tag,
since—aside from the need to compute the Vlasov equations for
all new species—more restrictive constraints on the simulation
time step arise. Separate efforts will therefore have to be
undertaken to study this effect.

The spatial structure of E‖ comprises significant filamenta-
tion, along with ubiquitous quadrupole features; see Figure 10.
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Figure 11. Merger of two plasmoids. Shown are contours of u‖e for various time steps, with the amplitudes in each plot normalized to the minimum and maximum
over the entire x–y plane at that respective time. On the right, these time slices are marked as red diamonds on a time trace of the heating rate; clearly, the merger
coincides with a strong spike in heating. Note that the second, smaller peak on the right corresponds to an unrelated merger event at a different location.

(A color version of this figure is available in the online journal.)

The latter stem from Efl
‖ ∝ BxEx +ByEy , whereas the inductive

component Eind
‖ (not shown) tends to produce larger-scale struc-

tures similar in shape to A‖. A few large-amplitude quadrupoles
dominate the contours of the heating rate. These are strong
plasmoids, simultaneously corresponding to locations of large
circular parallel current regions and of quadrupoles in E‖. When
comparing with Figure 9, this also explains why the spikes as-
sociated with plasmoid mergers in j‖E‖ are much larger than in
E‖, relative to the ambient turbulence: the former depends much
more strongly on the plasmoids than does the latter. These heat-
ing spikes and their underlying plasmoid mergers are addressed
next.

4.3. Plasmoid Merger Events

Plasmoids form in the turbulence as soon as the initial current
sheet breaks up. They are then able to float around in the x–y
plane somewhat freely, but their statistical location is influenced
moderately by the current sheet, as is evident from the time-
averaged current structures in Figure 5. In many cases, the
associated current produces multiple layered ringlike structures
around the plasmoid core, often reversing sign when moving
from one ring to the next, in effect partially shielding the
plasmoid from others of its kind; this feature is not unlike
Debye shielding in an electrostatic force picture. As parallel
currents feel an attractive force, plasmoids of the same sign (or,
in contour plots, of the same color) attract one another and may
merge if they approach each other too closely—in fact, such
merger events occur with great regularity. Conversely, opposite
signs result in a repelling force.

Parker (1988) discusses the possibility of magnetic reconnec-
tion being the cause for spikes in X-ray intensities in the solar
corona. Section 6 explores, among other things, whether said
spikes may be related to the kind of plasmoid merger events so
ubiquitous in the present simulations.

Figure 11 provides an example: Shown here is a portion of
the perpendicular plane for six narrowly spaced moments in
time (with 500 simulation time steps between adjacent time
slices in the figure). Note that the perpendicular simulation box
is the same as in previous figures, but values of x and y may

run higher than 10π due to the periodic boundary conditions.
In the beginning (upper left), this region contains two well-
sized plasmoids of positive sign (red), surrounded by rings of
negative current (blue) that touch in one single location, marking
the X point associated with this particular pair of plasmoids. As
the plasmoids are attracting each other, the X point region is
compressed until, eventually, the right plasmoid absorbs its left
counterpart and becomes a new, single plasmoid (lower right).
Further on the right, the heating rate for this short time window
is plotted for comparison, with the time steps of the contours
marked as red diamonds. It is evident from that plot that the
merger event coincides perfectly with a strong spike in j‖E‖,
which is not surprising since the sudden compression of the X
point leads to high-k⊥ contributions in both A‖ and Φ, entering in
an amplified manner into E‖ ∼ Efl

‖ ∼ k2A‖Φ. The case selected
for this figure is very representative of other plasmoid mergers
and heating spikes. While in some cases, a typical plasmoid may
merge with a slightly more oblate structure, it is almost always
possible to identify the merger event that brought about a strong
rise of the heating rate.

While it requires significant computational resources to prop-
erly study the statistics of plasmoid mergers, a few central
results are presented from a longer simulation at default pa-
rameters (from which the data in Figure 11 were taken). The
following characteristics are thus obtained: Taking the heating
rate for a time period of length 1606, one may define a spike
to occur whenever 〈j‖E‖〉rms exceeds its time-averaged value
(for this simulation, 22.6) by a factor of two. For the time
period under investigation, this definition yields a total of 50
spikes, making the characteristic plasmoid merger separation
timescale τmerge = 32; this number, however, can be expected
to depend fundamentally on the perpendicular box size. More-
over, it is possible to measure the individual spike widths at a
heating rate of twice the time average. Then averaging over all
spikes, one arrives at a characteristic plasmoid merger duration
of tmerge = 2.06. Coincidentally, the spike shown in Figure 11
has a very similar width. As before, all time-like quantities are
normalized to Lref/cs. As the mergers are nothing but reconnec-
tion events, it can be speculated that the merger time is related
to the linear tearing mode growth rate, with some correction
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Figure 12. Histogram of j‖E‖ for default parameters, with bins shown only up
to a value of 100; counted are individual time steps. The vertical dotted line
denotes the point where half the integrated heating occurs at lower values and
half at higher values. Bulk or background heating is to be found to the left of this
line, whereas the strongest plasmoid merger bursts begin at the right end of the
plot. A dashed line is included, corresponding to the best-fit power-law slope of
−2.9 in that range of heating amplitudes. The histogram was created from the
longest available simulation, covering a total time period of about 1600.

due to the plasmoid size relative to the current sheet width. In
fact, tmerge is of the same order as γ −1. Rigorously testing this
hypothesis requires long time statistics of nonlinear runs for var-
ious other parameter settings and therefore has to be deferred
to future work. Preliminary tests presented further below in this
section indicate, however, that tmerge is less sensitive to certain
input parameters than γ .

The statement that the tearing growth time γ −1 may be related
to tmerge does not contradict the findings of Loureiro et al. (2007)
and others who report large growth rates γ � γA associated
with the plasmoid instability. First, the aforementioned X point
compression is able to strongly enhance reconnection rates (see
also the linear kx ≡ kcs scan in Pueschel et al. 2011), thus
decoupling the kcs dependencies of γ −1 and tmerge. Second,
as the definition of tmerge relies on the root mean square of
the heating, background heating may leave an imprint on its
parameter scalings. Overall, it is therefore reasonable to assume
that tmerge exhibits many linear tearing mode properties but also
additional, nonlinear features that are more consistent with the
generally accepted picture of the plasmoid instability. Note also
that the relation tmerge ∼ γ −1 is likely not to be fulfilled generally
when going to different parameter regimes.

Regarding the previous comment that the present parameters
are squarely in the Hall regime, one may wonder whether
the above findings would not hint at a plasmoid-dominated
regime. In Figure 12, the heating distribution is shown for the
default parameter set, with the adaptive time step having been
taken into account. As is clear from the figure, somewhat less
than half of the total heating can be attributed to the peak on
the left, which includes roughly Gaussian-distributed, steady
heating, whereas the non-Gaussian tail to the right of this peak
stems from plasmoids and—at the highest heating rates—from
plasmoid mergers. It is therefore appropriate, for the present
regime, to expect significant impact from plasmoids, although
it needs to be stressed that the mechanism by which plasmoids
are produced here is different from the usual setups on which
regime distinctions tend to be based.

Figure 12 is in line with the general picture that small,
burstlike phenomena contribute comparably with the back-
ground heating: in the solar corona, the flare power-law index α

(Hudson 1991) is rather close to the critical value of 2 (see, e.g.,
Benz & Krucker 2002; Hannah et al. 2008), above which—
particularly in the quiet solar corona—nanoflare events domi-
nate the heating. Note that the power-law exponent of 2.9 shown
in the plot cannot directly be compared with the aforementioned
value of 2. The statements made here are simply that a power-
law scaling exists at higher heating rates and that plasmoids are
responsible for a large fraction of the total heating.

Merging plasmoids have been investigated in many publica-
tions. Uzdensky et al. (2010) and references therein provide ad-
ditional information on this topic. Additional gyrokinetic studies
of plasmoid mergers in strong guide fields, and their relation to
results from the aforementioned references, are deferred to a
separate publication. Returning to the overall heating and to
parallel electric fields, the impact of variations in the input pa-
rameters is discussed next.

4.4. Parameter Dependencies

In order to understand how changes in the physical input
variables affect the turbulence, a number of nonlinear scans
about the default parameter set were undertaken. Due to the
great computational expense associated with this investigation,
which included additional convergence tests in a number of
cases, the scans in me/mi, Ti0/Te0, and Δv‖ contain only three
data points each. The following parameter ranges are covered:
0.005 � ωdr � 0.5; 0.0005 � νc � 0.5; 0.05 � β � 0.5;
0.01 � me/mi � 0.1; 0.1 � Ti0/Te0 � 1; 0.1 � Δv‖ �
1; and 0.04 � kcs � 0.8. The impact of varying those
parameters on the parallel electric field and the heating rate
are of particular importance, and their scaling with three central
variables—ωdr, kcs, and νc—is presented in detail below, before
scaling exponents for all of the above parameters are given. The
selection of the first two of these three parameters is motivated
by their importance to solar corona scalings; see Section 6.

As a primary motivation for this study is to gain the ability
to scale the heating rate to corona-like physical conditions,
it is helpful to state here how general or approximate the
validity of such an exercise can be expected to be. While
future work will have to directly verify such extrapolations,
there is good reason to trust in the applicability of the results of
this section: Only three parameters are expected to be able to
elicit changes between physical regimes—the collisionality or
Lundquist number, when moving from the present collisionless
to a collisional regime; the drive frequency, when arriving
at decaying turbulence in the limit of low drive; and the
current sheet wave number, when entering a regime where finite
Larmor radius effects become important (typically this occurs
for k⊥ρs � 1). As shall be demonstrated in Section 6, coronal
parameters lie well outside any such new regimes. Dependencies
on other parameters, based in part on the linear scaling results in
Pueschel et al. (2011), can be expected to be continuous, making
a straightforward extrapolation possible.

Central to the turbulent dynamics is the nonlinear drive.
Figure 13 demonstrates that both E‖ and the heating rate
fundamentally depend on the drive strength, as measured by
ωdr. Qualitatively, this situation can be likened to a source term
in Ohm’s law: If energy is injected, it will contribute to heating.
Here, however, the nonlinear form of the drive term makes for a
somewhat more complicated energy source. Of great importance
is the fact that throughout almost the entire range of studied drive
frequencies, the scaling does not change (with the exception
of slight steepening in j‖E‖ at very low drive), showing that
quenching of the turbulence due to an all-dominant source term
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Figure 13. Scaling of E‖ (black squares) and the heating rate j‖E‖ (red
diamonds)—in the usual normalized Gene units—with the nonlinear drive
frequency ωdr. The significant impact of ωdr confirms that the drive term does
not stifle the turbulence even as ωdr � γ . Dotted lines show best-fit slopes;
the corresponding numerical values are reported in Equations (9) and (10).
For convenience, the results at default drive frequency have been marked with
additional crosses.

(A color version of this figure is available in the online journal.)

Figure 14. Scaling of E‖ (black squares) and j‖E‖ (red diamonds) with the wave
number kcs of the current sheet; see also the caption of Figure 13. Relatively steep
dependencies are observed, which are partially offset by the kcs dependence of
Brec, as discussed in Section 6.

(A color version of this figure is available in the online journal.)

does not occur, a consequence of the improved Krook drive
compared with that in Pueschel et al. (2011).

The simulation with the lowest ωdr = 0.005 differs somewhat
from those at higher drive frequencies; here the transition to
decaying turbulence is setting in. Moreover, the nonlinear phase
exhibits plasmoids in chainlike groups, with separate chains for
plasmoids of positive current and negative current. As such, this
case is more closely related to plasmoid chains studied, e.g., in
Drake et al. (2006).

In Figure 14, the scalings of parallel electric field and heating
rate with the driving wave number kcs are shown. The dependen-
cies are very stable over a wide range of kcs values—this prop-
erty aids in the accurate rescaling of these normalized results
when applying them to solar plasma parameters. In particular,
the values covered here all correspond to current sheet widths
greater than ρs, allowing for straightforward extrapolation to
larger scales, whereas one may expect finite-Larmor-radius ef-
fects to modify the scaling once kcs � 2π . Another feature,

Figure 15. Scaling of E‖ (black squares) and j‖E‖ (red diamonds) with the
collision frequency νc; see also the caption of Figure 13. While the dependences
seen here are relatively weak, a new regime begins to form at the highest
collisionality. The νcs range of values shown here corresponds to a Lundquist
number range of 3.3 × 106 � S � 1.7 × 104.

(A color version of this figure is available in the online journal.)

however, is more surprising: the quantities plotted in Figure 14
decrease steeply as kcs is increased, while linear growth rates
of the tearing mode increase under the same circumstances (see
Pueschel et al. 2011 and further down in this section). As both
E‖ and j‖E‖ are comprised, in part, of structures smaller than
the highest linearly unstable ky mode (as presented in Figure 7)
in the system, one might expect that the properties of E‖ and
j‖E‖ would be influenced significantly by the cascade range of
wave numbers. As shall be demonstrated below, however, us-
ing a quasilinear approach, these differences can be reconciled
without relying on the nonlinear cascade.

The impact of collisionality on the kinetic heating, as opposed
to its impact on the collisional dissipation, is the subject of
Figure 15. Based on the linear tearing mode, one may expect the
nonlinear system to be hardly influenced or weakly enhanced as
the collisionality is increased. As is evident from the figure, very
little dependence is observed; only at higher νc do the curves
steepen somewhat, but at a negative slope—also compare Ng
et al. (2012) at low resistivity. A similar regime change around
S ∼ 104 is recorded in Numata et al. (2011) for gyrokinetic
simulations.

One can also draw parallels with the findings reported in
Bhattacharjee et al. (2009) and Huang & Bhattacharjee (2010),
where the reconnection time trec is found to be constant above
a Lundquist number of S ∼ 105, while the peak current density
is decreasing with decreasing S near S ∼ 106. Qualitatively,
this agrees with the results shown in Figure 15, where E‖ (for
which trec may be used as a proxy for this argument) is constant
over a large range of S, whereas j‖E‖ is decreasing with νc near
S ∼ 10−4–10−5. This constitutes a slightly different range of
values for S than that in Huang & Bhattacharjee (2010). Their
arguments, however, are related to the plasmoid instability, the
usual setup for which, as discussed previously, differs from
the one used here. Similarly, Uzdensky et al. (2010) look at
plasmoid chains to predict that the collisionality-independent
regime starts near S ∼ 106.

Additionally, the low-νc behavior is reminiscent of a recently
observed feature of fusion-relevant microtearing modes, which
are driven by the background electron temperature gradient:
whereas previous work (Connor et al. 1990) had focused on
a regime where microtearing modes are stabilized for low
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collisionality, they become independent of νc at νc → 0 and
finite growth rate in another, new regime (Predebon & Sattin
2013; Carmody et al. 2013). In the former, the mode relies on the
time-dependent thermal force, while in the latter, magnetic drifts
lead to (radial) cross-field currents that destabilize a tearing
mode, thus motivating this comparison.

In the context of wide-ranging parameter scans, an intuitive
question is whether the prevalence of plasmoids conforms to
the standard criterion (Biskamp 1986) on the Lundquist number
for the plasmoid instability, namely that S > Scrit ≈ 104. With
the Lundquist numbers in Figure 15 covering 1.7 × 104 � S �
3.3 × 106, and with plasmoids appearing for all these values,
to determine whether the criterion is indeed consistent with
the present observations, a look at lower S is instructive. It was
stated in Section 2 that the lowest Lundquist number investigated
here was below S = 104. In fact, one additional value was
simulated, at νc = 0.5, corresponding to S = 3.3 × 103. At
this point, localized high-amplitude noise of numerical origin
at small scales appeared with regularity, utterly dominating the
root mean square results. Focusing on regions without such
noise (which tends to be fairly localized in the x–y plane), it is
possible to ascertain a previous claim, however: consistent with
the plasmoid criterion S � 104, filaments have now become
more prominent than circular structures in the turbulence.

In addition to the scalings shown in Figures 13–15, the
remaining parameter dependencies are measured. Combining
all results, one may write the parallel electric field (in the usual
normalized units Te0ρs/(eL2

ref)) as

E‖ = 3.18
(ωdr

0.1

)1.0 ( νc

0.005

)0.0
(

β

0.5

)1.1

×
(

me/mi

0.01

)−0.5 (
Ti0/Te0

1.0

)0.0 (
Δv‖
0.5

)1.1 (
kcs

0.4

)−2.2

(9)

and, similarly, the heating rate (as before, in units of
ne0Te0csρ

2
s /L

3
ref) as

j‖E‖ = 22.7
(ωdr

0.1

)1.5 ( νc

0.005

)−0.1
(

β

0.5

)1.3

×
(

me/mi

0.01

)−1.1 (
Ti0/Te0

1.0

)0.0 (
Δv‖
0.5

)1.8 (
kcs

0.4

)−2.55

.

(10)

Regarding the exponents in the above equations, an error of
±0.1 is characteristic for the accuracy of the fits; only for
the νc scan is there a region observed where a power-law fit
starts to break down (see Figure 15), with perhaps another
breakdown to be expected at even lower ωdr than those studied
here. While technically these expressions have been derived in
the vicinity of the default parameter set, they can also be used to
obtain predictions for parameters not achievable in present-day
simulations. It will be useful for future studies to extend certain
scans, for instance in the case of collisionality, to push into other
parameter regimes.

It is important to understand to what degree linear tearing is
able to predict these scalings. Not taking into account the purely
nonlinear parameter ωdr, the linear parameter dependencies—
again, with γ in units of cs/Lref—tend to deviate somewhat

from those in Equations (9) and (10):

γ = 0.156
( νc

0.005

)0.1
(

β

0.5

)0.0 (
me/mi

0.01

)−0.15

×
(

Ti0/Te0

1.0

)0.0 (
Δv‖
0.5

)1.0 (
kcs

0.4

)1.1

. (11)

Not surprisingly, considering the similar parameter set used
there, the above exponents agree rather well with the results of
the dependency studies in Pueschel et al. (2011).

The growth rates in Equation (11) were taken at ky = 0.1,
which, based on Figure 7, is expected to outweigh the other
linearly unstable modes in the nonlinear simulations. A simple
means of comparing the linear scalings with their nonlinear
equivalents is by forming a quasilinear fraction γ /k2

⊥ and
then doubling and tripling the scaling exponents to arrive
at predictions for E‖ and j‖E‖, respectively. Simply taking
k⊥ ∼ kcs leads to the following quadratic quasilinear scalings:
Q ∝ ν0.2

c β0.0(me/mi)−0.3(Ti/Te)0.0Δv2.0
‖ k−1.8

cs , which can be
compared directly with Equation (9). Moderate differences exist
in the parallel velocity shift dependency, whereas the collision
frequency, the temperature ratio, the mass ratio, and the current
sheet wave number are described relatively well by the linear
predictions. The biggest outlier is the exponent of β: the
linear simulations indicate essentially no impact on γ , whereas
the nonlinear results correspond to a near-linear dependence.
This, however, is not surprising: E‖ is dominated by its flutter
component, which contains a factor B⊥ ∝ A‖ ∝ β. Therefore, if
γ ∝ β0, the intuitive prediction for the nonlinear case becomes
E‖ ∝ β1, very close to the exponent in Equation (9). While there
clearly is no perfect agreement between linear and nonlinear
results, the values are still reasonably similar in most cases; it
would appear that the linearly unstable region causes a strong
imprint of physics onto the turbulent system, with the cascade
at higher k⊥ adding additional and possibly deviating behavior
that is not described by linear tearing mode physics.

As mentioned previously, obtaining good scaling relations for
the plasmoid merger timescales tmerge and τmerge would require
significantly extending most of the simulations performed for
these scans. While extracting a well-converged saturation level
tends to be possible with a simulation covering only a few
hundred time units, mergers sufficient in number for statistical
analysis tend to occur over a time period of O(1000) or more.
Therefore, only a cursory analysis is possible with the present
simulation data; it suggests that tmerge depends at most rather
weakly on the input parameters. In fact, taking into account the
poor statistics for this case, the situation is consistent with there
being no dependence of tmerge on any of the input variables;
if there are any exceptions, the most likely candidates are ωdr,
Δv‖, and perhaps kcs, where scaling exponents may be as steep
as −0.5. A more thorough investigation along these lines has to
be deferred to future work.

A variety of analyses has been presented relating to kinetic
heating as a consequence of particle acceleration by paral-
lel electric fields. Another means of heating is provided by
collisions, through direct collisional dissipation. This topic is
covered next.

4.5. Collisional Heating

For the standard set of parameters, the collision rate is
comparable to the peak of the linear growth rate when expressed
in the same units. In many cases, this hints at a semi-collisional
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Figure 16. Collisionally induced energy dissipation C = dE/dt |coll as function
of kx (black solid line) and ky (red dashed line). In the wave number range
[0.5, 5], a blue dotted straight line ∝ k−2.5 is shown for reference.

(A color version of this figure is available in the online journal.)

regime. This rule has been shown not to be applicable, with
the prior findings on turbulence scalings indicating that the
system is more than one order of magnitude in νc away from
experiencing any sizable impact from collisions. Separate from
how collisions affect the turbulent dynamics, however, is the
question of whether they are able to cause appreciable heating.
To quantify the collisional heating, direct measurements in the
simulation data are thus conducted.

The gyrokinetic free energy has been discussed, e.g., in Bañón
Navarro et al. (2011a), Bañón Navarro et al. (2011b), and Plunk
et al. (2012). Here the definition

E(kx, ky) =
∑

j

∫
dv‖dμ

Tj0

Fj0

(
gj (kx, ky) + qj

Fj0

Tj0
χj (kx, ky)

)∗

× gj (kx, ky) (12)

is used (Pueschel et al. 2013). Note that here and in the following,
the term energy technically refers to an energy density. While,
in general, various terms may affect the time evolution of the
energy, the present focus lies on the impact of the collision term
in the Vlasov equation, Equation (2). Defining C ≡ dE/dt |coll to
be the collision-induced rate-of-change of the gyrokinetic free
energy, it is possible to measure this impact during a simulation
directly, yielding a time average of 〈C〉rms = 0.41, in units
of ne0Te0csρ

2
s /L

3
ref . This value can be compared directly to the

kinetic heating rate j‖E‖, which evaluates to 22.7 for these
parameters, clearly showing that kinetic far outpaces collisional
heating. However, two additional findings may be gleaned from
this analysis.

First, since ∂f/∂t |coll ∝ νc, it follows that C ∝ νc, as
long as no new, collisional regime has been entered. Therefore,
collisional heating is likely to surpass kinetic heating at around
νc ≈ 0.3, very much in line with the threshold for the collisional
regime discussed earlier.

Second, even though C is relatively small at νc = 0.005,
its spatial properties can be compared with results from other
publications. Spectra of C in kx (black solid line) and ky (red
dashed line) are shown in Figure 16. Much like in the case of
the amplitude spectra in Figure 8, the two differ in the low-
k⊥ range but become isotropic in slope almost as soon as the
linearly stable range is reached. At higher kx,y , both curves
very closely follow the blue dotted line, which indicates a slope

of k−2.5. This value agrees well with the Ohmic heating rate
shown in TenBarge & Howes (2013). There a different setup is
created to drive three-dimensional Alfvénic turbulence through
a parallel antenna current. However, as in the present case, the
drive is confined to the low-k⊥ region, and collision-induced
dissipation is small compared with the predominant heating
processes; therefore, a comparison between the high-k⊥ ranges
of both approaches is indeed meaningful. It should be pointed
out that their high-wave-number regime, normalized to ρs, spans
roughly values from 30 to 100 (which is where the slope was
measured for the above comparison), but at hydrogen mass ratio.

Having investigated in some detail the heating properties
of the present form of reconnection turbulence, a new topic
is broached next: the formation of temperature anisotropy,
which also constitutes a recipient of energy via kinetic heating
processes.

5. TEMPERATURE ANISOTROPY

In a magnetized plasma that is not fully dominated by colli-
sional processes, temperature fluctuations parallel and perpen-
dicular to the background field may develop independently to
a certain degree. Various studies have focused on the effects
of background temperature anisotropy on magnetic reconnec-
tion (Chen et al. 1984; Burkhart & Chen 1989; Tu & Marsch
2001; Matsui & Daughton 2008), while it has been claimed
that guide field reconnection is not able to produce temperature
anisotropy (Karimabadi et al. 2005). As shall be demonstrated
here, however, tearing modes may indeed cause such anisotropy.
This is of particular importance since ions in the solar wind ex-
hibit anisotropic temperatures (Marsch et al. 1982; Kohl et al.
1997, 1998), with the corona the likely point of origin of said
property; typically, cyclotron resonances are invoked in its ex-
planation (Hollweg & Isenberg 2002), but the possibility of
creating anisotropic temperatures in the absence of these res-
onances shall be investigated here. On a side note, Section 4
variously refers to isotropic features at high k⊥; this, however,
is entirely unrelated to temperature isotropy as defined here.

In Gene, the perturbed distribution function is time evolved
while the background distribution is in equilibrium, with fj �
Fj0. The temperature fluctuation Tj � Tj0 (which is an energy-
like quantity) is not simply the second velocity moment of the
perturbed distribution but contains another term, generally of
the same order, that involves the perturbed density. Separating
the components parallel and perpendicular to the background
field, the following definitions apply (Görler 2009):

T‖j = 2M20 − Tj0M00

nj0
, (13)

T⊥j = M02 − Tj0M00

nj0
. (14)

Here Mab denotes the va
‖v

b
⊥ velocity moment of the perturbed

distribution, with M00 ≡ nj . First, with these definitions,
the total temperature perturbation becomes Tj = T‖j /3 +
2T⊥j /3. Second, a Maxwellian velocity space in fj at the
same temperature as the background distribution causes the
temperature fluctuation to vanish, as the M00 term cancels
the other moments in the above definitions.

This is true for the perpendicular temperature at the very
beginning of the simulation, as observed in Figure 17 for the
ions. The initialized current sheet, on the other hand, enhances
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Figure 17. Parallel (blue) and perpendicular (red) ion temperature fluctuations
as functions of time, in conjunction with the anisotropy factor (black) defined
as the ratio of the two. At t = 0, the values are 〈T‖i〉rms = 0.297 (reflecting the
ion contribution to the initial current sheet) and 〈T⊥i〉rms = 0.007 (a nonzero
value due to the perturbation δni � ni). As the turbulence saturates, averaged
levels (dotted lines starting at t = 200) can be extracted, corresponding to an
anisotropy of T ani

i = 0.699.

(A color version of this figure is available in the online journal.)

M20 and thus yields a finite T‖. Almost as soon as the linear
mode starts to grow, however, both temperature fluctuations
increase at different rates (favoring T⊥), until eventually they
saturate at an anisotropy of T ani

i = 0.699 for default parameters.
Here the definition

T ani
j = 〈T‖j 〉rms

〈T⊥j 〉rms
(15)

has been used, where, in the above example, both constituents
are far away from a zero fluctuation level, an important criterion
to make this definition useful. To allow for alternative interpre-
tations, another quantity is introduced, based on the velocity
space moments directly:

Vani
j = 〈M20,j 〉rms

〈M02,j 〉rms
. (16)

Employing only the velocity moments of fj, this definition
compares the parallel and perpendicular temperatures of only
the density perturbation nj, whereas Equation (15) compares the
full parallel and perpendicular temperature fluctuations of the
system. While the standard definition is useful for a variety of
purposes, some of the following analyses also include results
obtained for the alternative form, for the reader’s convenience.

Before providing additional details on the corresponding
measurements in nonlinear simulations, it is instructive to briefly
look at anisotropies of the linear tearing mode. Figure 18
contains T ani

j as functions of ky (black and red lines). While
the ions significantly favor perpendicular temperature (with
T ani

i < 1) throughout the entire range of wave numbers, the
electrons have a mostly parallel temperature at low ky, but
reverse that property as higher ky are reached. It is to be stressed
that any initial anisotropy in the perturbed distributions fj (the
background distributions Fj0 are isotropic by definition) stems
solely from the presence of the current sheet at ky = 0; the fact
that the ions later favor T⊥ shows that the current sheet cannot
be the source of their quasilinear or nonlinear anisotropy.

One other feature of Figure 18 warrants attention, captured by
the dotted lines: the absence of collisions measurably alters the

Figure 18. Temperature anisotropies for the linear tearing mode at default pa-
rameters. Shown as solid lines is the standard definition T ani from Equation (15)
for ions in black and electrons in red and as dashed lines the moment-based defi-
nition Vani from Equation (16) for ions in blue and electrons in pink. The current
sheet, which exists only at ky = 0, does not factor into these results. Dotted
lines correspond to T ani data from a collisionless simulation.

(A color version of this figure is available in the online journal.)

Table 1
Temperature Anisotropy

QL NL NLk>

T ani
i 0.43 0.70 0.81

T ani
e 1.40 2.92 3.57

Vani
i 0.40 0.43 0.31

Vani
e 0.86 0.53 0.76

Note. Anisotropies for ions/electrons, quasilinear/nonlinear (QL/NL) simula-
tions, and using definitions T ani

j (see Equation (15)) andVani
j (see Equation (16)).

One additional column, labeled NLk>, was evaluated using the nonlinear data
only at kx > 0.5, ky > 0.5, which lies outside the linearly unstable region and
instead represents the nonlinear cascade region of wave numbers.

anisotropy—lower ky see a more isotropic mode relative to the
case with finite νc, whereas the ions gain parallel temperature
at higher ky as νc is set to zero. This appears counterintuitive,
as collisions are expected to isotropize the plasma. On the other
hand, given that νei ∼ γ , finite collisionality may affect the
linear drive; compare collisional enhancement of collisionless
tearing in Porcelli (1991). Also consider that the ions are less
likely than the electrons to be subject to strong isotropization at
moderate collisionalities.

Taking the linear values and weighting them with the
growth rates from Figure 1, one obtains averaged, quasilin-
ear anisotropies. Quasilinear estimates can be used to predict
the properties of a (weakly) nonlinear system if the nonlinear
property under investigation is governed solely by the linear
physics. A very illuminating aspect of quasilinear tearing mode
anisotropy, however, is that T ani

j depends on Δv‖ (not shown in
the figure). As a reminder: When expressing the linear growth
rate in inverse Alfvén times, it is invariant under changes in Δv‖,
which only affect γ [cs/Lref]. If, even for the collisionless case,
T ani

j is sensitive to Δv‖, theories based on Alfvénic normaliza-
tion may not capture this effect.

In Table 1, all anisotropies for standard parameters are
summarized: in addition to the quasilinear and nonlinear values,
the last column contains nonlinear results when excluding the
low-k⊥ range, to illustrate the impact of the nonlinear cascade
(see also Cranmer et al. 2007 for a discussion of anisotropy in the
turbulent cascade in fluid simulations). For the ions, see T ani

i in
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Figure 19. Temperature anisotropies as functions of the collision frequency
νc: shown as black triangles is the ion anisotropy, while that of the electrons is
marked by red crosses. For this figure, only the regular definition in Equation (15)
is included. See also Figure 15, where E‖ and j‖E‖ are shown as functions
of νc.

(A color version of this figure is available in the online journal.)

the table, the picture is consistent with an intuitive interpretation
that the linear mode causes anisotropy (favoring perpendicular
temperature), which manifests itself mostly in the linearly
unstable region but also, if only very moderately, reaches smaller
scales through the cascade. The situation appears to be more
complicated where the electrons and T ani

e are concerned; here
the anisotropy (consistently favoring parallel temperature) is
increased from quasilinear to nonlinear to high-k⊥ nonlinear.
Clearly, a cascade-range source of electron anisotropy exists,
very possibly related to plasmoid mergers and heating bursts that
involve higher k⊥. Additional studies will have to be undertaken
to illuminate the full physical picture of how the tearing mode
creates—and how the turbulence moderates (for the ions) or
enhances (for the electrons)—these anisotropies. Suffice to
state here that the anisotropy is statistically related with j‖E‖
heating, although the picture is somewhat complicated by large
fluctuations as well as the fact that kinetic heating impacts both
T‖ and T⊥.

As a side note, (electron) temperature anisotropy can be
responsible for the excitation of the firehose and mirror in-
stabilities (Bale et al. 2009). In the present case, temperature
fluctuations are on top of a much larger background temper-
ature Tj0 ∼ TjLref/ρs, which is isotropic. However, one may
envision a secondary process where the temperature of the den-
sity fluctuation would be prone to anisotropy-based instabili-
ties; in that case, Vani

e would be the quantity governing stability.
Since β < 1, it is therefore concluded, given the anisotropies in
Table 1 and Figure 18, that the firehose and mirror instabilities
cannot be excited.

As an extension to the parameter scans presented in Section 4,
the dependence of the temperature anisotropies on νc has been
studied, with the results shown in Figure 19. They raise an
interesting question: Why does the ion temperature anisotropy
(black triangles), unlike that of the electrons (red crosses),
undergo an enhancement (i.e., reach even lower values while
already below 1) as νc is increased? First, electrons are more
susceptible to the isotropization effect of collisions. This is
confirmed by the sudden drop of T ani

e at the highest νc in the
figure, where a new collisionality regime starts to set in (see
Section 4), whereas the ion curve sees no sudden changes at that
point. Second, T ani

i is related to quasilinear physics to a certain

Table 2
Physical Parameters for the Solar Corona

ne0 B0 Brec

109 cm−3 100 G 5 G

Lref ρs νei

109 cm 9.5 cm 87 s−1

β Te0 = Ti0 me/mi

3.5 × 10−4 106 K 1/1836

Notes. A fully ionized hydrogen plasma is assumed. The values shown here
are taken from Cassak et al. (2006) and Priest & Forbes (2002). For these
parameters, the ion sound speed evaluates to cs = 9.1 × 106 cm s−1.

degree: as the linear tearing mode experiences the influence
of moderate collisionalities (compare Figure 18), it is able to
increase its anisotropy. However, at a sufficiently large νc, this
trend will reverse—until, eventually, T ani

i = T ani
e = 1, meaning

both species will have perfectly isotropic temperatures once the
physics are fully dominated by collisions.

As a last comment on temperature anisotropy, the turbulence
simulation with Δv‖ = 0.1 has T ani

i = 0.55 and T ani
e = 4.72.

The electrons are thus significantly more anisotropic than at
default parameters, whereas the ion value has changed only
slightly; this goes to show that quasilinear anisotropy (whose
changes with Δv‖ are far weaker) does not capture the entire
behavior of the nonlinear case, particularly for the electrons,
which may experience effective parallel heating from plasmoids
and plasmoids mergers.

6. APPLICATION TO THE SOLAR CORONA

It is instructive to revisit select results, particularly from
Section 4, to apply them quantitatively to the conditions in
the solar corona. To this end, physical parameters characteristic
of fully ionized hydrogen, reconnecting solar corona plasmas
(Cassak et al. 2006; Priest & Forbes 2002) are listed in Table 2. In
the present section, all quantities are specified in cgs units. Note
that considering significant currents are necessary to create a
Brec as specified in the table, it is intuitive to look at the instability
threshold for ion acoustic waves, even though these waves are
generally stable in the corona due to Landau damping. Using the
results of Vranjes et al. (2009), the scale disparity between ρs
and Lref , which affects the perturbed electron density, invariably
lowers the electron flow velocity below the critical value.

Considering the content of Table 2, two important input
parameters are thus left to be determined. First, the current
sheet replenishing timescale τrepl = ω−1

dr . As a starting point, in
the absence of direct measurements, the default value from the
previous sections is retained, with τrepl = 10Lref/cs = 1100 s.
This value lies above the characteristic timescale of about 102 s
for microflares (Parker 1988) but below typical loop lifetimes
on the order of 104 s (Winebarger et al. 2003; López Fuentes
et al. 2007), whereas it agrees fairly well with typical turnover
times of solar granules of ∼10 minutes (Mehltretter 1978;
Hirzberger et al. 1999), which may be thought of as the source
location of energy injected into the current sheets. Second, the
current sheet width λcs = 2π/kcs. Available observational data
are strongly limited by spatial resolution, with the smallest
observable structures occurring at around 107 cm (Scharmer
et al. 2008; Brooks et al. 2013), effectively providing an upper
limit on λcs. Based on other publications (Cassak et al. 2006;
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Spangler 2009), an estimate of λcs = 1.5 × 105 cm is used, but
differing values can certainly be envisioned.

Furthermore, it is convenient to use the reconnecting field
Brec instead of the parallel velocity shift Δv‖ to quantify the
current sheet. Valid for the present sinusoidal current sheet
configuration, the following expression—stemming from the
fundamental equations and verifiable in simulations—relates
these two parameters:

Brec

B0ρs/Lref
= 3.61

(
kcs

0.4ρ−1
s

)−1
β

0.5

×
(

me/mi

0.01

)−1/2 Δv‖
0.5vTj

. (17)

With these ingredients, one can rewrite Equation (10) in cgs
units, resulting in a volumetric heating rate:

j‖E‖
erg cm−3 s−1

= 1.5 × 10−3
( ne0

109 cm−3

)0.375
(

Te0

106 K

)−0.1

×
(

Lref

109 cm

)0.2 (
β

3.5 × 10−4

)0.125 ( νei

87 s−1

)−0.1

×
(

me/mi

1/1836

)−0.25 (
Ti0/Te0

1.0

)0.0 (
Brec

5 G

)1.8

×
( τrepl

1100 s

)−1.5
(

λcs

1.5 × 105 cm

)0.75

. (18)

How does this value compare with observations and other
work? In Withbroe & Noyes (1977), the related coronal
heating flux is determined to require values on the order
of 106 erg cm−2 s−1. It may be translated into a volumet-
ric heating rate via division by the coronal loop length
Lref , yielding 10−3 erg cm−3 s−1, in good agreement with
Equation (18). Ofman et al. (1998), for Te0 = 106 K, reports
some 10−4 erg cm−3 s−1, also rather compatible with the present
results, while Guarrasi et al. (2014) uses a maximum heating
rate of 2 × 10−3 erg cm−3 s−1, again in good agreement with the
findings here.

When recalibrating the focus from the quiet solar corona—
for which the physical parameters in Table 2 apply—to active
regions or even flares, higher background densities, tempera-
tures, and magnetic fields become of interest. Unless, however,
the settings for Brec, τrepl, or λcs are also changed, the impact of
an order-of-magnitude increase in each of the aforementioned
background quantities results in an increase of j‖E‖ by less than
a factor of two, as per Equation (18). This is not surprising, as
the violent event of a solar flare need not necessarily impact the
microturbulence that is occurring on smaller length scales. Pos-
sible increases in j‖E‖ heating during such events may, however,
occur as a consequence of enhanced Brec.

While a number of assumptions have entered into deriving
the expression for the heating rate in Equation (18), the fact that
its numerical value agrees very well with observational data
indicates that the type of reconnection turbulence on which the
present work is focused may indeed be contributing a significant
fraction to the overall coronal heating.

Most of these parameter dependencies are rather weak,
with the strongest impact stemming from the three parameters
most closely associated with the current sheet properties: the
reconnecting field, the replenishing time, and the sheet width.
As mentioned previously, τrepl and λcs are not well-determined

Figure 20. Volumetric heating rate j‖E‖ in units of erg cm−3 s−1, as a function
of current sheet width λcs and replenishing timescale τrepl. The solid black line
denotes a value of 10−3, considered a good estimate for observed heating; for
comparison, values of 10−4 and 10−2 are also included as dotted black lines.
Limiting the region of applicable heating rates are the timescales associated
with microflares and coronal loop lifetimes, denoted by black dashed lines, as is
the spatial resolution limit of present-day observations. Wide ranges of λcs and
τrepl values remain where the present form of reconnection turbulence is able to
explain coronal heating.

(A color version of this figure is available in the online journal.)

from observations. Therefore, their impact on j‖E‖ is illustrated
in Figure 20, where the heating rate is shown as a function of
these two parameters. A wide corridor exists where the observed
heating can be explained via j‖E‖ heating due to turbulent
reconnection as described in Section 4.

Other previously discussed results that are of interest here
are the occurrence of heating bursts in the context of plasmoid
mergers and the possibility of these events corresponding to
nanoflares. Estimating from Figure 9 that only a few percent
of the time-integrated kinetic heating is contained in merger-
related bursts—consistent with Figure 12, where nanoflare-
relevant mergers occur only at the very highest of energies—the
corresponding cgs value becomes a few 10−5 erg cm−3 s−1. This
result agrees with the findings of Reale et al. (2005) for averaged
heating due to turbulence-born nanoflares, even though the
turbulence itself exhibits features very different from those
presented here.

It is also most instructive to look at the timescales in-
volved in the plasmoid merger processes. Taking the value
tmerge = 2.06Lref/cs obtained in Section 4 and applying the
normalization from Table 2, one arrives at tmerge = 230 s. How-
ever, the conditions in the region where observationally rele-
vant nanoflares originate deviate somewhat from those quoted
above. As mentioned previously, Parker (1988) contains a dis-
cussion of nanoflares; in that publication, somewhat differ-
ent values are mentioned: 2 × 108 cm � Lref � 109 cm and
2 × 107 cm s−1 � cs � 3 × 107 cm s−1. This results in a
range for the merge time of 6.7 s � tmerge � 50 s. For the
lower end of the quoted range for Lref , observations indicate a
nanoflare timescale of �20 s (Porter et al. 1984; Parker 1988). It
should be noted that in contrast to nanoflares, microflares are de-
scribed in Parker (1988) as clusters of nanoflares—as a plasmoid
merger results in a single, well-identifiable spike in the heating
rate, it cannot correspond to an entire microflare with temporal
substructure.

Based on the above values, it can therefore be concluded that
the simulated tmerge agrees rather well with nanoflare timescales
from observations. However, an important caveat is to be made:
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tmerge was measured in a simulation at parameters that require
some rescaling to match coronal conditions. The agreement
observed here is conditional either on tmerge not varying with
those input parameters or on various dependencies of tmerge
effectively canceling. Considering the findings of Section 4,
this may well be the case, but additional simulation work will
have to be conducted to achieve a greater degree of certainty in
this matter.

7. SUMMARY

Magnetic reconnection turbulence—i.e., turbulence driven by
reconnection but also itself creating new reconnection—has
been studied in the strong guide field limit, via gyrokinetic
simulations. The drive was provided through a current sheet in
the y direction (which is replenished continuously), thus creating
a system susceptible to the tearing instability. An important
characteristic of the resulting turbulence is the emergence of
circular structures in the parallel current identified as plasmoids;
these objects are subject to forces that cause mutual attraction
between currents of the same sign and may result in mergers of
two plasmoids. Such events cause bursts in the heating rate, and
their characteristic timescale suggests that plasmoid mergers
may be the cause of solar nanoflares.

Heating, at nominal parameters, is dominated by kinetic
processes, with the j‖E‖ heating primarily stemming from
a flutter-like component that directs E⊥ fluctuations, which
are perpendicular to the perturbed field lines, along the guide
field. Using nonlinear parameter scans, a parameterization for
the heating rate is provided, and it is shown that kinetic
heating significantly exceeds collisional heating for Lundquist
numbers above the plasmoid threshold of 104. The results also
indicate that linear tearing mode physics cannot fully explain the
measured scalings, to which the nonlinear cascade contributes
additional features. When applying parameters typical for solar
corona plasmas to the simulations, it is shown that the resulting
volumetric heating rate of 1.5 × 10−3 erg cm−3 s−1—while
subject to some uncertainty due to a number of assumptions—is
in good quantitative agreement with the situation in the corona,
as illustrated in Figure 20. It is therefore concluded that
turbulence of the type studied here may constitute an important
process in coronal heating.

Additionally, it is demonstrated that tearing mode physics is
able to produce temperature anisotropies in the absence of back-
ground anisotropy. While ordering considerations require those
anisotropies to be small relative to the stable equilibrium, as a
secondary process, tearing modes and reconnection turbulence
are identified as a candidate cause of solar ion anisotropy in
cases where no cyclotron-resonant heating occurs.

Future investigations will have to address, among other mat-
ters, two questions: Do additional turbulence regimes exist
where the scalings derived here break down? And do depen-
dencies exist of the plasmoid merger rate on various input pa-
rameters? In addition, the existence of background gradients
in the density and temperature is able to significantly alter the
characteristics of the turbulence, and future work will have to
determine to what degree such gradients are able to influence
plasma microturbulence in the corona.

Lastly, the effects of fully resolving the third spatial dimen-
sion—in the form of the coordinate z along the background
magnetic field—will have to be investigated. In addition to ex-
tending the corresponding preliminary studies mentioned in the
present paper, current sheets with helicity will have to be ana-
lyzed. Past studies (Borgogno et al. 2005; Perona et al. 2014)

indicate that magnetic islands become asymmetric under the
influence of finite helicity and that stochastic magnetic fields
may reduce driving current gradients. It may be speculated that
in a fully turbulent state, such asymmetries are mitigated, while
stochasticity may, depending on its strength, impact plasmoid
amplitudes.
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Bañón Navarro, A., Morel, P., Albrecht-Marc, M., et al. 2011b, PhRvL,

106, 055001
Benz, A. O., & Krucker, S. 2002, ApJ, 568, 413
Bhattacharjee, A., Huang, Y.-M., Yang, H., & Rogers, B. 2009, PhPl, 16, 112102
Biskamp, D. 1986, PhFl, 29, 1520
Boldyrev, S., & Perez, J. C. 2012, ApJL, 758, L44
Borgogno, D., Grasso, D., Porcelli, F., et al. 2005, PhPl, 12, 032309
Brizard, A. J., & Hahm, T. S. 2007, RvMP, 79, 421
Brooks, D. H., Warren, H. P., Ugarte-Urra, I., & Winebarger, A. R. 2013, ApJL,

772, L19
Burkhart, G. R., & Chen, J. 1989, PhRvL, 63, 159
Candy, J., Waltz, R. E., Parker, S. E., & Chen, Y. 2006, PhPl, 13, 074501
Carmody, D., Pueschel, M. J., & Terry, P. W. 2013, PhPl, 20, 052110
Cassak, P. A., & Drake, J. F. 2013, PhPl, 20, 061207
Cassak, P. A., Drake, J. F., & Shay, M. A. 2006, ApJL, 644, L145
Cassak, P. A., & Shay, M. A. 2012, SSRv, 172, 283
Chen, C. H. K., Salem, C. S., Bonnell, J. W., et al. 2012, PhRvL, 109, 035001
Chen, J., Palmadesso, P. J., Fedder, J. A., & Lyo, J. G. 1984, GeoRL, 11, 12
Comisso, L., Grasso, D., Tassi, E., & Waelbroeck, F. L. 2012, PhPl, 19, 042103
Comisso, L., Grasso, D., Waelbroeck, F. L., & Borgogno, D. 2013, PhPl,

20, 092118
Connor, J. W., Cowley, S. C., & Hastie, R. J. 1990, PPCF, 32, 799
Cranmer, S. R. 2001, JGR, 106, 24937
Cranmer, S. R., van Ballegooijen, A. A., & Edgar, R. J. 2007, ApJS, 171, 520
Daughton, W., Roytershteyn, V., Albright, B. J., et al. 2009, PhRvL, 103, 065004
Daughton, W., Roytershteyn, V., Karimabadi, H., et al. 2011, NatPh, 7, 539
Donato, S., Servidio, S., Dmitruk, P., et al. 2013, in AIP Conf. Proc. 1539, Solar

Wind 13, ed. G. P. Zank et al. (Melville, NY: AIP), 99
Drake, J. F., Swisdak, M., Phan, T. D., et al. 2009, JGR, 114, A05111
Drake, J. F., Swisdak, M., Schoeffler, K. M., et al. 2006, GeoRL, 33, L13105
Einaudi, G., & Van Hoven, G. 1981, PhFl, 24, 1092
Fermo, R. L., Drake, J. F., & Swisdak, M. 2012, PhRvL, 108, 255005
Fitzpatrick, R. 2010, PhPl, 17, 042101
Frieman, E. A., & Chen, L. 1982, PhFl, 25, 502
Furth, H. P., Killeen, J., & Rosenbluth, M. N. 1963, PhFl, 6, 459
Görler, T. 2009, PhD thesis, Univ. Ulm
Grasso, D., Tassi, E., & Waelbroeck, F. L. 2010, PhPl, 17, 082312
Guarrasi, M., Reale, F., Orlando, S., et al. 2014, A&A, 564, A48
Hannah, I. G., Christe, S., Krucker, S., et al. 2008, ApJ, 677, 704
Hesse, M., Schindler, K., Birn, J., & Kuznetsova, M. 1999, PhPl, 6, 1781
Hirzberger, J., Bonet, J. A., Vázquez, M., & Hanslmeier, A. 1999, ApJ,

515, 441
Hollweg, J. V., & Isenberg, P. A. 2002, JGR, 107, 1147
Howes, G. G., Dorland, W., Cowley, S. C., et al. 2008, PhRvL, 100, 065004
Huang, Y.-M., & Bhattacharjee, A. 2010, PhPl, 17, 062104
Huang, Y.-M., & Bhattacharjee, A. 2013, PhPl, 20, 055702
Hudson, H. S. 1991, SoPh, 133, 357
Ishizawa, A., & Watanabe, T.-H. 2013, PhPl, 20, 102116
Jenko, F., Dorland, W., Kotschenreuther, M., & Rogers, B. N. 2000, PhPl,

7, 1904
Karimabadi, H., Daughton, W., & Quest, K. B. 2005, JGR, 110, A03214
Karimabadi, H., Roytershteyn, V., Daughton, W., & Liu, Y.-H. 2013, SSRv,

178, 307

17

http://adsabs.harvard.edu/abs/2009PhRvL.103p5003A
http://adsabs.harvard.edu/abs/2009PhRvL.103p5003A
http://adsabs.harvard.edu/abs/2009PhRvL.103u1101B
http://adsabs.harvard.edu/abs/2009PhRvL.103u1101B
http://dx.doi.org/10.1063/1.3632077
http://adsabs.harvard.edu/abs/2011PhPl...18i2303B
http://adsabs.harvard.edu/abs/2011PhPl...18i2303B
http://adsabs.harvard.edu/abs/2011PhRvL.106e5001B
http://adsabs.harvard.edu/abs/2011PhRvL.106e5001B
http://dx.doi.org/10.1086/338807
http://adsabs.harvard.edu/abs/2002ApJ...568..413B
http://adsabs.harvard.edu/abs/2002ApJ...568..413B
http://dx.doi.org/10.1063/1.3264103
http://adsabs.harvard.edu/abs/2009PhPl...16k2102B
http://adsabs.harvard.edu/abs/2009PhPl...16k2102B
http://adsabs.harvard.edu/abs/1986PhFl...29.1520B
http://adsabs.harvard.edu/abs/1986PhFl...29.1520B
http://dx.doi.org/10.1088/2041-8205/758/2/L44
http://adsabs.harvard.edu/abs/2012ApJ...758L..44B
http://adsabs.harvard.edu/abs/2012ApJ...758L..44B
http://dx.doi.org/10.1063/1.1857912
http://adsabs.harvard.edu/abs/2005PhPl...12c2309B
http://adsabs.harvard.edu/abs/2005PhPl...12c2309B
http://adsabs.harvard.edu/abs/2007RvMP...79..421B
http://adsabs.harvard.edu/abs/2007RvMP...79..421B
http://dx.doi.org/10.1088/2041-8205/772/2/L19
http://adsabs.harvard.edu/abs/2013ApJ...772L..19B
http://adsabs.harvard.edu/abs/2013ApJ...772L..19B
http://adsabs.harvard.edu/abs/1989PhRvL..63..159B
http://adsabs.harvard.edu/abs/1989PhRvL..63..159B
http://dx.doi.org/10.1063/1.2220536
http://adsabs.harvard.edu/abs/2006PhPl...13g4501C
http://adsabs.harvard.edu/abs/2006PhPl...13g4501C
http://dx.doi.org/10.1063/1.4803509
http://adsabs.harvard.edu/abs/2013PhPl...20e2110C
http://adsabs.harvard.edu/abs/2013PhPl...20e2110C
http://dx.doi.org/10.1063/1.4811120
http://adsabs.harvard.edu/abs/2013PhPl...20f1207C
http://adsabs.harvard.edu/abs/2013PhPl...20f1207C
http://dx.doi.org/10.1086/505690
http://adsabs.harvard.edu/abs/2006ApJ...644L.145C
http://adsabs.harvard.edu/abs/2006ApJ...644L.145C
http://adsabs.harvard.edu/abs/2012SSRv..172..283C
http://adsabs.harvard.edu/abs/2012SSRv..172..283C
http://adsabs.harvard.edu/abs/2012PhRvL.109c5001C
http://adsabs.harvard.edu/abs/2012PhRvL.109c5001C
http://adsabs.harvard.edu/abs/1984GeoRL..11...12C
http://adsabs.harvard.edu/abs/1984GeoRL..11...12C
http://dx.doi.org/10.1063/1.3697860
http://adsabs.harvard.edu/abs/2012PhPl...19d2103C
http://adsabs.harvard.edu/abs/2012PhPl...19d2103C
http://dx.doi.org/10.1063/1.4821840
http://adsabs.harvard.edu/abs/2013PhPl...20i2118C
http://adsabs.harvard.edu/abs/2013PhPl...20i2118C
http://adsabs.harvard.edu/abs/1990PPCF...32..799C
http://adsabs.harvard.edu/abs/1990PPCF...32..799C
http://dx.doi.org/10.1029/2001JA000012
http://adsabs.harvard.edu/abs/2001JGR...10624937C
http://adsabs.harvard.edu/abs/2001JGR...10624937C
http://dx.doi.org/10.1086/518001
http://adsabs.harvard.edu/abs/2007ApJS..171..520C
http://adsabs.harvard.edu/abs/2007ApJS..171..520C
http://adsabs.harvard.edu/abs/2009PhRvL.103f5004D
http://adsabs.harvard.edu/abs/2009PhRvL.103f5004D
http://adsabs.harvard.edu/abs/2011NatPh...7..539D
http://adsabs.harvard.edu/abs/2011NatPh...7..539D
http://adsabs.harvard.edu/abs/2013AIPC.1539...99D
http://adsabs.harvard.edu/abs/2009JGRA..114.5111D
http://adsabs.harvard.edu/abs/2009JGRA..114.5111D
http://adsabs.harvard.edu/abs/2006GeoRL..3313105D
http://adsabs.harvard.edu/abs/2006GeoRL..3313105D
http://adsabs.harvard.edu/abs/1981PhFl...24.1092E
http://adsabs.harvard.edu/abs/1981PhFl...24.1092E
http://adsabs.harvard.edu/abs/2012PhRvL.108y5005F
http://adsabs.harvard.edu/abs/2012PhRvL.108y5005F
http://dx.doi.org/10.1063/1.3374427
http://adsabs.harvard.edu/abs/2010PhPl...17d2101F
http://adsabs.harvard.edu/abs/2010PhPl...17d2101F
http://adsabs.harvard.edu/abs/1982PhFl...25..502F
http://adsabs.harvard.edu/abs/1982PhFl...25..502F
http://adsabs.harvard.edu/abs/1963PhFl....6..459F
http://adsabs.harvard.edu/abs/1963PhFl....6..459F
http://dx.doi.org/10.1063/1.3475440
http://adsabs.harvard.edu/abs/2010PhPl...17h2312G
http://adsabs.harvard.edu/abs/2010PhPl...17h2312G
http://dx.doi.org/10.1051/0004-6361/201322848
http://adsabs.harvard.edu/abs/2014A&A...564A..48G
http://adsabs.harvard.edu/abs/2014A&A...564A..48G
http://dx.doi.org/10.1086/529012
http://adsabs.harvard.edu/abs/2008ApJ...677..704H
http://adsabs.harvard.edu/abs/2008ApJ...677..704H
http://dx.doi.org/10.1063/1.873436
http://adsabs.harvard.edu/abs/1999PhPl....6.1781H
http://adsabs.harvard.edu/abs/1999PhPl....6.1781H
http://dx.doi.org/10.1086/307018
http://adsabs.harvard.edu/abs/1999ApJ...515..441H
http://adsabs.harvard.edu/abs/1999ApJ...515..441H
http://dx.doi.org/10.1029/2001JA000270
http://adsabs.harvard.edu/abs/2008PhRvL.100f5004H
http://adsabs.harvard.edu/abs/2008PhRvL.100f5004H
http://dx.doi.org/10.1063/1.3420208
http://adsabs.harvard.edu/abs/2010PhPl...17f2104H
http://adsabs.harvard.edu/abs/2010PhPl...17f2104H
http://dx.doi.org/10.1063/1.4802941
http://adsabs.harvard.edu/abs/2013PhPl...20e5702H
http://adsabs.harvard.edu/abs/2013PhPl...20e5702H
http://adsabs.harvard.edu/abs/1991SoPh..133..357H
http://adsabs.harvard.edu/abs/1991SoPh..133..357H
http://dx.doi.org/10.1063/1.4826201
http://adsabs.harvard.edu/abs/2013PhPl...20j2116I
http://adsabs.harvard.edu/abs/2013PhPl...20j2116I
http://dx.doi.org/10.1063/1.874014
http://adsabs.harvard.edu/abs/2000PhPl....7.1904J
http://adsabs.harvard.edu/abs/2000PhPl....7.1904J
http://adsabs.harvard.edu/abs/2005JGRA..110.3214K
http://adsabs.harvard.edu/abs/2005JGRA..110.3214K
http://adsabs.harvard.edu/abs/2013SSRv..178..307K
http://adsabs.harvard.edu/abs/2013SSRv..178..307K


The Astrophysical Journal Supplement Series, 213:30 (18pp), 2014 August Pueschel et al.

Kobayashi, S., Rogers, B. N., & Numata, R. 2014, PhPl, 21, 040704
Kohl, J. L., Noci, G., Antonucci, E., et al. 1997, SoPh, 175, 613
Kohl, J. L., Noci, G., Antonucci, E., et al. 1998, ApJL, 501, L127
Lazarian, A., Kowal, G., Vishniac, E., & de Gouveia Dal Pino, E. 2011, P&SS,

59, 537
Lazarian, A., Vlahos, L., Kowal, G., et al. 2012, SSRv, 173, 557
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